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0. INTRODUCTION

This final report summarizes most of the research sponsored by the

National Aeronautics and Space Administration under Grant NGR - 33-006-

020 during the period January 1, 1972 to January 1, 1973. The research

supported by this grant deals mostly with problems of digital data trans-

mission and includes some new work on computer communication networks.

There are four self-contained sections labeled I through IV. Each section

has its own figures, references and equation numbering.

Section I, Signal Processing with Finite State Machines, continues the

work on finite memory detection. New results for a time-invariant

machine are given, optimum time-varying machines for detection are pre-

sented, and the structure and performance of these machines are developed.

Problems of practical significance are discussed. Many talks have been

given on this subject. One paper has been accepted for publication, and

a second is almost completed. Invited papers were presented at the

IEEE Convention, in New York in March 1972 and at the Southeastern

Systems Symposium in North Carolina in March 1973. These papers have

been published in the records of the symposia. Two papers were presented

at the International Symposium on Information Theory in California in

January 1972. This work was performed by R. R. Boorstyn, P. F. Lynn,

and R. W. Muise and is continuing.

Section II discusses work on Signal Parameter Estimation from Dis-

crete-Time Observations. New results relevant to the problem of esti-

mating several single-frequency tones from a finite number of noisy,

discrete-time observations are presented. This problem has application

to data systems testing, radar, and other measurements. A paper will be
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presented at the International Symposium on Information Theory in Israel

in June 1973 and will be submitied for publication. This work was performed

by R. R. Boorstyn and D. C. Rife.

Section III contains work on Digital Filtering for Radar Signal Proces-

sing Applications. A novel approach in synthesizing digital filters for signal

processing applications is presented. This synthesis method takes advan-

tage of the known signal waveform structure and results in many fewer

digital computations as compared to convolution processing. This approach

is particularly suited to synthesis of matched filters for radar signal proces-

sing and yields matched or approximately matched filters which simulta-

neously have very low storage and very low computational requirements.

A paper has been published in the Transactions on Audio and Electronics,

IEEE, March 1972. This work was performed by R. R. Boorstyn and J. D.

Echard.

Section IV contains work On Multiple Server Queues Where Not All

Servers are Identical. This is an attempt to derive some properties of net-

works of queues by considering the individual outputs of multiple server

queues. It is shown under what conditions the outputs retain the Poisson

character of the input. This work was performed by R. R. Boorstyn and

P. McGregor.

The PIB faculty participating in this program were R. R. Boorstyn,

who prepared the final report, R. A. Haddad, M. Schwartz, and J. r. V o.T " "lit -- 1lt
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I. SIGNAL PROCESSING WITH FINITE STATE MACHINES

This paper is concerned with the implementation of communications

receivers using digital processors or digital computers and the effect of this

implementation on performance. One can consider conventional (analog) re-

ceivers to consist of filters, summers, multipliers, comparators, matched

filters, phase-locked loops, etc. The usual method in converting these re-

ceivers into digital devices is to replace each analog component with its

digital counterpart. Thus, after the required sampling, digital filters re-

place the original analog filters, summers and multipliers are replaced by

digital summers and multipliers, etc. If the sampling is fast enough there

should be little deleterious effect on performance.

However, there is one further constraint that is the dominant concern

of this paper. Every coefficient, every data sample, and the results of

every operation must be represented and stored by a finite length word,

i. e., a finite number of bits. For a standard computer approximately 30

bits are available for each word and this should be sufficient. For special

purpose computers, or in time-sharing operation where the device is to be

used simultaneously for many similar operations, it is important to in-

vestigate the effect of reducing the storage capability considerably. It

is clear that as the number of bits is reduced, the performance will ulti-

mately deteriorate. If the amount of storage is increased from this point,

the performance will be reasonably satisfactory. However, if the size of

storage is reduced further the question arises: is there an entirely new

digital structure that will perform well with a minimum amount of storage?

This question is answered affirmatively in this paper.

To illustrate, consider a simple binary receiver. One of two equally
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likely signals are to be sent, and n independent samples X 1 , X 2 , ... , Xn

are received. If one of the signals (denoted by hypothesis Ho ) is sent then

each of the Xk has density fo(x). Otherwise (H1) they have density fl(x) .

The optimum receiver forms

fl(Xk )

(1) X(k) = I n f (Xk) +X(k-l), k = 1, ... , n,

where X(o) = 0, and decides in favor of H 1 if X(n)>0. This is just a re-

cursive version of the likelihood ratio.

In general all the n data samples must be remembered with infinite

precision to make the optimum decision. If the data is assumed to be col-

lected sequentially in time, then equation (1) states that after k samples are

received these first k samples of data need effectively only be "remembered"

by storing the single number X(k) . Then X(n) is used to make the decision.

But the X(k) must still be stored with infinite precision. It can be shown

that, in simple examples, merely uniformly quantizing each X(k) to a finite

number of bits and using equation(l) results in a deterioration of perfor-

mance if the number of samples is roughly greater than the number of le-

vels of quantization.

There are, however, receiver structures which incorporate funda-

mentally this finite storage constraint, here called "finite memory", and

perform almost as well as the optimum infinite memory receiver given by

equation (1). These receivers can be modelled as finite state machines.

After the (k- 1)s t sample the machine may be in one of m states, e. g. , the

m levels of a log 2 m bit quantizer. This state at time k- 1, Sk- 1, and the

next sample Xk are used to determine the state at time k. The final de-

cision is based upon the state at time n. An example of such a finite
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machine suitable for detection is shown in Figure 1. This is essentially a

polarity counter with a null-zone and overflow.

This machine, which can be called a "linear" machine, operates as

follows. If any sample, sayX.k >d , then the state of the machine moves one

step to the right. If Xk< -d it moves one step to the left. Otherwise it re-

mains in the same state. It remains in the end states unless, e. g., Xk<-d

in state m. The machine initially starts in one of the middle two states with

equal probability (assuming m is even and symmetrical statistics). If at

time n, S n > m, H 1 is decided. Otherwise Ho is decided. This is a time-

invariant machine since the transition rules from state to state do not

change with k. Cover [ 1] has shown that, remarkably, as the length of the

data sequence becomes infinite the probability of error Pe(m, n) asymptoti-

cally approaches zero if m > 4 for time-varying machines. Indeed, this

also holds true for m> 2 for certain statistics. Hellman and Cover [ 2] have

found the asymptotic probability of error for time-invariant machines and

have shown that this also goes to zero under certain conditions. They have

also shown that the optimum machines resemble, asymptotically, that of

Figure 1 but with d - oo . The convergence of probability of error is slow

and little insight is gained from this asymptotic behavior about optimum or

good machines and their performance for finite data sequences.

Lynn and Boorstyn [ 3] have evaluated the performance of the "linear"

machine for finite values of m and n. Typical results are summarized in

Figures 2 and 3. Briefly these indicate that for 3 bits of memory (m=8)

performance close to optimum (infinite memory) can sometimes be achieved.

These numerical results are for Gaussian statistics: fl(x) Gaussian with

mean j >0 and variance -2 , f (x) Gaussian with mean -i and variance a20
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It is comforting that for this "linear" machine an explicit and simple

expression for the probability of error can be obtained. This is given below

in equation 2.

(2) PL (m, n) = 1+
e 1m/2 m =1 -Pj

1+(a31al (j odd)

where p. = 2 4 3 cos (7rj/m) + a2

m is even

al =Pr{ X
k < -dl H 1 }

a2 =Pr {IXk1 <dl H 1 }

a3 =Pr {Xk > dl H 1

al + a 2 + a 3 = 1

and a 3 > a 1

The first term in (2) is the steady state term since the second term van-

ishes as n- o . For al<a3<<l pcan be tightly bounded by P=a2 -2 la 3

for all j. Thus the second term can be bounded by .( a3-a) n/(1-p) which

is independent.of m. Thus m appears only in the first term and n in the

second term. Both expressions are functions of a. and through them of d/cr

and 4 / ( for Gaussian statistics. Thus (2) should yield considerable insight

about the setting of the threshold d/a and the dependence upon signal-to-

noise ratio / r as well as the nature of the variation of Pe with m and n.

Some results for a four state machine are given in Figure 4.

To gain further insight we considered a machine with a different struc-

ture which we call a majority rule machine. This looks only at the last

21-1 non-null (I Xk > d) samples and decides by majority rule. E.g., if

more than half of them are >d then HI is chosen. This machine has 22 -1
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states of memory and its performance is relatively easy to evaluate.

This machine performs about as well as a linear machine with logarith-

mically fewer (21) states but can serve as upper and lower bounds for the

linear machine. (The lower bound may not always be applicable.) Specifically

if the superscript L denotes the linear machine and M, the majority rule

machine, then

M 21+1 L M 21-1
(3) PeM(2 ,n)< PeL(21,n) < PeM(2 2  n)

A comparison of these two machines is given in Figure 5. Neither of

these machines are optimum, although Hellman has shown that the linear

machine for m=2 is optimum.

Improved performance can be obtained if the machines are allowed to

be time-varying. Muise and Boorstyn [ 4] have found the optimum time-

vary-machine. It can be described as follows. If in state i at time k- 1 go

to state j after receiving Xk if

fl(Xk)
(4) yj(k)<In (Xk) + L (k-l1)<y j+l(k)

Li(k-1) is defined to be

Pr (Sk_ l=i H l
(5) L.(k- 1) = nPr

Pr{Sk_ l=Ho}

and can be viewed as a likelihood ratio where the "data" is the only ob-

servation that the machine can make, i. e. , its state, at time k- 1. Equa-

tion (4) can be viewed as a time-varying quantizer where the yj(k) are the

threshold values and the L. (k- 1) are the representation values. If, at

time n, the machine is in a state Si for which Li (n) > 0 then H 1 is decided;

otherwise H
o

Algorithms have been obtained for calculating the sets of coefficients
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L.(k-1) and yj(k) and for evaluating the performance of these optimum

machines. The treshold values are given by

f.(k) - f. (k)
ej(k) - ejl 1 (k) j=2,...,m

where

e.(k) = P {deciding H 1 at time n ISk=j, H)

f. (k) = P {deciding H 1 at time nlSk=j, Ho}

It can be seen that if at time k the design of the machine in the past is

known then the coefficients in (5) can be evaluated. However, the coeffi-

cients in (6) depend upon the future design of the machine. The algorithm

essentially starts with an initial design and iteratively runs back and forth

in time applying equations (6) and (5) in turn. It has been proven that this

algorithm converges and for typical examples the convergence is rapid.

Figure 6 displays the coefficients for an example. Note that the coefficients

for n=8 are not simply extensions of those for n=4 although the difference

does not seem to be great. This suggests a suboptimum and simpler design

which would find the best coefficients for each k as if it were the time of

decision.

Typical results for the optimum machine are also shown in Figures 2

and 3 for Gaussian statistics. Also given there for reference is the per-

formance of the optimum infinite memory machine and of the polarity coun-

ter. These results show that remarkably good performance can be ob-

tained with relatively simple machines and a very small memory-size

limitation.

The basic results in the optimization above can be inferred from the



following argument [ 5] . Let C denote a correct decision at time n. Then

at time k

1 m oo

(7) P(C ISk- l=i)= f Pr(C ISk=1, Sk-l=i k, Hj)
3=0 I=1 -00

Pr(Sk=f ISk- 1=i, Xk , Hj)

f(xk ISk 1 =i, Hj)Pr(Hj ISk 1 =i) dxk

But the first term in (7) is Pr(C ISk=2, H ) and is used to form the terms

in (6), the second term is Pr(Sk= ISk- 1 =i, x k ) = 0 or I depending on the de-

cision rule at time k, the third term is fxk(xkI(Hj)=f (xk) , and the fourth
V

term is used to form (5). If Aif(k) is the region of xk such that a transition

will occur from Sk- 1= i to Sk= f, then

(8) P(C ISk 1 =i) = = i(k) j Pr(C Sk= , H )f (x)

Pr(Hj Sk-l=i) dxk

The optimum transition rule for going from Sk- 1 to Sk can be found

from (8) by, for each i and xk, finding the i that maximizes the bracketed

expression. Muise and Boorstyn, in addition to other results, have given

structure to this updating rule and proven its optimality. From (8) it is

easy to extend this results to include time-varying statistics, many hypo-

theses, and time-varying memory sizes.

Although the memory has been constrained to be finite by limiting it

to a sequence of states from a finite alphabet, the coefficients in (4) in the

above analysis are not so constrained. (The arithmetic operation indicated

in (4) is performed instantaneously, i. e., not stored, so that no discrete

limitation need be put upon it. ) These coefficients must be stored and there



are approximately 2nm of them! It is not known at this time what the effect

would be if the storage of these coefficients were also limited. However the

storage of the states is data sensitive (read-write memory) while the coef-

ficients are (except for an adaptive machine) fixed (read-only memory).

These differences can be exploited, especially by time sharing the coeffi-

cients and the arithmetic operation with many similar detection processes.

A sketch of such a structure is given in Figure 7.

Further research is continuing on many aspects of this problem - op-

timum time-invariant machines, algorithms for M-ary detection, other

communications receivers, such as equalizers, more practical transition

rule algorithms, time-sharing implementation, etc. It is hoped that these

investigations will provide a new and more efficient viewpoint for designing

communications systems incorporating fundamental digital constraints.
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II. SIGNAL PARAMETER ESTIMATION FROM

DISCRETE-TIME OBSERVATIONS

This paper is intended to present some new results relevant to the prob-

lem of estimating the parameters of several single-frequency tones from a

finite number of noisy, discrete-time observations. This problem has ap-

plication to data system testing, radar, and other measurement situations.

The general model is indicated on Figure 1. In general the signal has

k
the form , b i exp [j(wit +ei)] . In a working system the imaginary part

i=l
may be derived from the real part by a Hilbert transformer or the imaginary

part may not be processed at all.

Time does not permit an examination of all the possible cases. There-

fore, we will only discuss the case of a single tone whose imaginary part

is a single cysoidal tone. An understanding of this case is fundamental to

an understanding of the other cases.

The parameter estimation problem was formulated and examined by

Slepian in his often-quoted paper of 1954. [ 1] Our intent here is to study,

in more detail, a specific variation of the problem.

The real part of the signal, s(t), is b0 cos( 0 t + 80 ). Suppose all three

parameters are unknown, but only b 0 and w0 are to be estimated. (The

phase can be estimated but we will not do so. )

The computer input will be two sets of samples,

i X=[Xo, X 1 ,.. .XN- 1]T andY = [YOYl,... YN1]T , where

X = s(tn) + W(tn), n = 0 to N - 1, (1)

S(t) + W(t), n =0 to N- 1,
Yn = s(t n) + W(t), n = 0 to N - I, (2)
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and

s(t) = b 0 sin (w 0t + e 0 ) . (3)

W(t) is the Hilbert transform of the noise, W(t). *We only consider the case

of independent noise samples.

If we write Z = X + jY then the joint probability density function (p. d. f.)

of the elements of the sample vector Z when the parameter vector is a is

given by

f(Z;)[= ] exp - I Z 2 + (Yn V 2. (4)
=a 2 7 2a( n=4)

where

_ -w. b,-0 ]T , (5)

n = b cos (t + e), (6)

and

vn = b sin (wt n+ ). (7)

We will write t =(n 0 +n) T.

In developing the topic we will consider three main aspects of the

problem. First we will examine lower bounds to estimation error, in

particular Cramer-Rao lower bounds. Then we will develop and analyze

maximum-likelihood (ML) estimators of the signal parameters. Finally,

we will discuss practical estimation algorithms and simulation results.

The frequency estimation algorithm has a threshold effect, which we will

also discuss.

BOUNDS

Let us first look at lower bounds to estimation error. In an estimation

(or measurement) system it is important to have numbers that indicate the

best estimation that can be made with the available data (the observations).
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In a measurement system RMS errors are important and are often used

as a measure of system inaccuracy. Estimation bias is of secondary im-

portance, although it is generally desirable to minimize bias. In this report

we will generally find that the bias can be neglected. Thus RMS errors will

be the important consideration.

Lower bounds to estimation accuracy have been studied by many people.

Some of the better-known bounds are: the Cramer-Rao (C-R) bound [ 2] and

its generalizations 3],the Bhattacharyya system of bounds the Barankin

bounds [ 5, 6 ],the Ziv-Zaki bounds [],and the Chapman-Robbins bound [8]

The C-R bound is imbedded in the Bhattacharyya system of bounds and in the Barauk

in bounds. The Chapman-Robbins bound is related to the C-R bound. The difference

is that the Chapman-Robbins bound avoids the need for the regularity conditions

required in theC-R and Bhattacharyya bounds. Seidman has observed that many of

the bounds are loose, especially at signal-to-noise ratios (SNR)above threshold [9].

Some are also difficult to use. We will use maximum-likelihood(ML)estimation and

will generally be able to keep the bias very small. Thus, above threshold,

the C-R bound will apply. We will separately evaluate threshold effects.

The generalized C-R bound is due to Rao [ 3].It can be shown that this

bound is the best (tightest) of a certain class of bounds [10].

Before reviewing the bound it is helpful to make some definitions. We

assume the indicated operations are legitimate. (They are in this problem.)

Let H(Z, a) =log f(Z;a) . (9)

Let S be the vector defined by its typical element:

S. = H(Z, a) . (10)
1 1

The Fisher information matrix, J(a), is defined by

J=E{SST . (11)
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A typical element of J is

ij..=E{H iH =-EH . (12)

Let & (Z) be an estimator of a . Let the matrix D be defined by typical

element

D. = E{ (Z)} . (13)

Let the matrix C(a) be defined by

C(a) = E { &-)(-a) } (14)

With these definitions and certain well-known regularity conditions on

f(Z;a) and J, the generalized C-R bound is the statement that the matrix

C -DJ- DT is positive semidefinite. From this we find that

Var{ i } > [ DJ- DT]ii i =, 2 , 3 ,... p, (15)

where [ ii denotes the ith diagonal element of [ ] and p is the number

of elements in a . We will ignore the conditions for equality to occur in

(15) since they are generally not met in the problem at hand.

If E{& } = 6ij (16)

which happens when & is an unbiased estimator of a, then D = I and the

bounds become: 11]

Var i}> Jii , i = ltop . (17)

It can be shown that with f(Z; a) as given above

1 , , n  n  1 8J.. 2 1[80 . j 8 . 8 .+ ,(18)
o 2 n=O 8 8a j Et = - ,
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where

a = [ 0 b0,' 0 ]T (19)

After determining the elements of the J matrix, the details of which

are omitted, one obtains:

2 2
b T 2 (nON+2n 0 P+Q) 0 b T(n N +P)

10 N 0 (20)
o-

2 2
b 2 T(n0 N +P) 0 b2 N

1  0 1

where
N-1

S n N(N- 1) (21)
n=0

N-i
2 N(N- 1)(2N- 1) (22)Q n = 6 (22)

n=0

and noT is the time at which the first sample is taken.

From here on let us suppose n0 = 0. This will be convenient later.

From (20) the bounds will depend upon n0 . We will not dwell upon

this dependence.

We can see from the zeros in J that the level bound, Var { }> J 2 2

will be tle same whether or not the phas and/or frequency are known. If

the phase were known the J matrix would be

m f 0
0 J22 '

for example. If the frequency were known the J matrix would be



22 0

0 J
33

Observe that the elements of J are not functions of w or E . This is

not true in the more general cases.

Inversion of the J matrix is easy. When all of the parameters are un-

known the results are:

2
Var {W' 0  b2 12 _ (23)

2 2Var { 0l >b T-N(N -1)

Var{ b } > 2 /N (24)

Var{8 }> 2 (2N- 1) (25)
0ab 2 N(N+1)

0

MAXIMUM LIKELIHOOD ESTIMATION

Now let us look at ML estimation of 0 and b 0 , the frequency and

level. The ML estimate of a is the value of a, say a , that maximizes

f(Z;a) when Z is the observed sample vector.

The maximum of f(Z;_) will occur at the maximum of log(f) =H(Z, C),

or at the maximum of the function

1 22
L = - -  2 + (Y - vn ) (26)

n

Since EX 2 , , and a2 are not affected by w, b, or 8, we can drop them

from L and use L:

L N - n +( Y V n) " L + V (27)
n N n n n n n
n n
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2b [ X cos(nwT+8) + Y sin (nw T +)] - b (28)
N i n n

n

Define

F(Z,w) = 3 (X cos nwT +Y sin nwT) (29)
n

and

G(Z, w) =(Yn cos n T-Xn sin nwT) . (30)

n

Then

L 1 
= - [F(Z_,) cos e + G (Z ,e) sin ] - b2  (31)

Assuming b 0 > 0, we need to maximize F cos .+ G sin e over both

e and w . The maximum over e is 4F2 + Gt . Thus the ML estimate of w0

is the value of w that maximizes

B() =[ F 2 (Z, w) + G2 (Z,e)] /N 2  (32)

The ML estimate of b0 is b0 =IB(w) (3)

Relationship to DFT

Recall that the discrete Fourier transform (DFT) of the vector Z is

the set of complex numbers: [12, 13, 141

N-l

A = Z e-j2 TnkN k =0, 1, 2,..., N - . (34)
nK N =0 n

If we define a function A (w) :

N-1
A(w) Z e j n T (35)

n=0

then
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Ak =A k =0, 1..., N- 1. (36)

It is easy to show that the function B(w) defined above is

B(o) = I A(w) 12 (37)

We see, therefore, that ML estimation of o0 and b 0 is related to the DFT

of the sample vector Z . This fact will suggest a practical algorithm later.

Properties of w0

Because of the nonlinear nature of the estimation algorithm we are

unable to derive the distribution functions for b0 and w0 . We can, however,

show:

1. The p. d. f. of w is symmetrical about c, modulo o s

22. Var { } is proportional to c 2 and independent of O 0 =27/T.)

Noise Model. The following noise model leads to easy proofs. Let {Vn } be

a set of independent Rayleigh r. v. with parameter 1. That is

v exp[-v 2 /2] v > 0

fv (v) = (38)

0 , v< 0

Let {4n} be a set of independent r. v. uniformly distributed over

(-r, ) .

We model the Gaussian samples as

Wn =d Vn COS n (39)

and

W =a V sin 4 . (40)n n n
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Analysis . Recall

Z=X +jYnn n n

Then, using our noise model,

j(n 1 T+Of) JPn

Zn = be j + Vne (41)

Thus

A (w) = - Z Jnw
n

jW 1 -j(np- +e1 +nw T) (42)
N e ble-jn +c Vne , (42)

where p = (w -w 1 )T . (43)

Let yn n 1- nw 1T , n = 0 to N - 1 . (44)

Since the 4 are independent and uniform on (-7, r) , in effects so are the
n

Yn . We are therefore justified in writing

j e0 -j (np- yn) (45)

A(o) = e [bo e -jnp + ve n

Thus B(w)=-L [bO cosn + a- Vncos (ng -n) 2+.
N n n

2 [bo sin np + E Vn sin(np- yn) 2 (46)
N n n

The independence from e0 is now obvious.
A

Without loss of generality, let p be the value of p in the range ( -7, 7)

that maximizes B(w) . The estimator, wO , will then have the value:

m = + - ;modulo w (47)
0 0 27 s
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Observe that B(w) is an even function of the pair 3, y • (48)

The statistics of -y are the safie as the statistics of y . Thus the statistics

of -y . Thus the statistics of -p must be the same as the statistics of .

Hence the p. d. f. of p must be an even function of p and E (p} = 0. From (46),

the statistics of p do not depend upon 0 or e 0 , but do depend upon the SNR,

b /2~2

Since we choose W0 according to (47), the p. d. f. of p is related to the

p. d. f. of in the manner illustrated on Figure 2. The p. d. f. of 0 is even

about o0 except for the part from 2w 0 to w , when w 0 < -2-(or part from 0

0

to 2 0 - , when >

Consider the situation when w0 <  . If Pr{2 0 < 0< a } is small,

which it is when the SNR is large enough, the E{a} = w0 or 0 is unbiased.

If Pr{2w0 < < W } is significant then 0 is biased in the direction of

we /2 . In other words, E{ W 0- > 0. If W0> s /2 the above remarks

reply with the obvious modifications. Observe that due to the symmetry of

the problem, the bias of W 0 must be an odd function of w 0 about w 8/2.

It is easy to show that if w 0 is equal to zero, W /2, or w the p. d. f.

of 0 is even about ws/2. Thus, in these three cases E(w 0) =ws/2 . We

see, therefore, that the bias of 0 has the following values:

0 0E(-0- 0)

0 s/2

W s/Z 0

Ss -W /2

Clearly we expect to make frequency estimation errors if wo is close
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to zero or C . At moderate SNR, say above the threshold region, we would
s

not expect trouble if the difference between w0 and zero (or s) is at least

four times the RMS bound. In practice we do not expect the ambiguity at

zero at w s to be a problem.

The variance of 3 depends only upon the SNR. Thus the variance of w0
2is proportional to ws and is not a function of 00 . The variance of o0 is a

function of w 0 , but its variation with w 0 is small at SNR above the threshold

region. Hence the C-R bound for unbiased estimators is appropriate in this

region.

An example. When there is no noise then it can be shown that

A(w) = b e 0e-j(N-1)z sin Nz (45)
0 N sin z

where

CL -C

S0 T = (wo-clO)/W (46)
2 2s

B(w) is IA(w) 2. Thus

2 sin (Nz) (47)

N sin (z)

This function is shown on Figure 3. The function is symmetric about C0

and has period o . The global maximum occurs at w and has value b2
s 0 0

Notice numerous low-amplitude maxima. Without noise the ML estimates

of O0 an b 0 have no error.

When noise is present B(w) loses its clean, symmetrical shape and the

minor maxima get larger. The global maximum is usually close to wC 0

Figure 4 illustrates this situation.

If the SNR is small B(w) will occasionally be so badly distorted that
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the global maximum occurs at a frequency far removed from w0 as illus-

trated in Figure 5. When this happens, the ML frequency estimation al-

gorithm makes a large error. It is the occurence of these rare but large

errors, which we call sports, at low SNR that causes VAR (W0 } to pull away

from the C-R bound.

AN ALGORITHM

As indicated above, once an estimate of w 0 is made, estimates of b 0

and 60 can be done by straight-forward computations, using appropriate

equations. Thus the difficult and time-consuming part of an algorithm is

the part that locates the maximum of B(w) . This part is essentially a search

routine.

One way to develop an algorithm is to use a two-part search routine.

The first part calculates B(w) for a set of w values between zero and os '

and identifies the w that maximizes B(w) over this set of w values. The

second part locates the local maximum closest to the value of w picked out

by the first part. We call the first part the coarse search and the second

part the fine search

The Coarse Search

For the coarse search we evaluate B(w) at the set of frequencies {w k

defined by

S= k , k = 0, 1, 2, ... , M - 1, (48)
k MT

where M is a power of 2 greater than or equal to the number of samples,

N. We also always choose N to be a power of 2. Thus M/N is also a

power of 2.

Observe that the set (A( k)} is the DFT of the set {Zn} defined by
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Zn  , n = 0, 1,2,..., N- 1

Zn =  (49)

0, n=N, N +1,...,M-1

The set {B( k)} is simply the set {IA(w k) 2

The output of the coarse search is the value of wk, say w , that cor-

responds to the largest member of the set {B(wk)}

It is natural to use M = N in the coarse search. However, it turned out

that the w thus obtained was the wrong choice (not close to the global max-

imum) often enough at low SNR to cause trouble. We found that the number

of wrong choices was significantly reduced when the coarse search used

M/N equal to 2 or 4.

Our coarse search uses a fast Fourier transform (FFT) algorithm to

compute the desired DFT.

The Fine Search

The fine search algorithm locates the value of w closest to w that max-

imizes B(w). If the derivative of B(w) at w, B'(w ) is positive, the de-

sired maximum is at a value of w greater than w . Otherwise the desired

maximum is at a value of w less than or equal to w .

Consider Figure 6. Given a frequency to start from w, the problem

is to locate the closest zero in B'(w) with B" (w) < 0. In the figure this oc-

curs at point B. Points A and C correspond to minima in B(w).

Our fine search algorithm computes B'(w) at points P 1 through P8,

finally locating points on either side of the desired zero, points P 7 and P8'
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Then we use the secant method (Action [ 12), p. 52) to compute successive

approximations to point B and the frequency estimate, 0 . The iteration

formula is simple:

B ( i-1 B'( i)i - 1
i+l B'(ci -B' (o) (50)i- 1) 1

The process is stopped if B' (w ) = B' (C ) , if B'(c.) = 0, or if

IWo +Wl-. I is less than 1 percent of the square root of the bound on the

variance of ..
1

If W1 < w then the initial steps of the fine search work to the left of c~ ,
using B' (w) < 0 to indicate that w < w . In either case the initial steps are

small enough to avoid missing the correct zero in B'(c); the step size is .

Threshold Effect

It is well known that nonlinear estimation is generally plagued by thresh-

old effects. At low SNR there is usually a range of SNR in which the mean

squared error (m. s. e.) rises very rapidly as SNR devreases. The SNR at

which this effect is first apparent is called the threshold. Receivers are

often said to operate above or below threshold.

Digital frequency estimation also has threshold effects, generally con-

nected with the occurence of sports. In this section we!present a calcula-

tion of threshold effects. The result accurately describes one particular

model.

Consider the estimation of the frequency of a single complex tone. Let

the sampling frequency be ws and the number of samples be N. Assume the

phase is unknown. Suppose the tone frequency is 0 -= - Assume the

algorithm is the following, using M = N:
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N-I
1 - j2 rnk /N

1. compute the set: A k = Z eje This is

n=0

the DFT of {Z )
n

2. Identify the largest I Ak, say I(A, , and record

3. Start the fine search at o = w and continue until

the maximum of B(w) is found.

Since we chose w 0 = 2, AN/2 should be the largest. That is, the coarse

search should give I = N/2. If I # N/2 we say a sport has occurred. If I

N/2 the m. s. e. is greater than zero and less than the square of the distance

to oW +1 *

We will approximate the m. s. e. in this case by the C-R bound for an

unbiased estimator, which we designate CR From equation (23),

3w
2 _ s (52)
CR 2 72N(N2 - 1)

where

p 0/2 2 (53)

If a sport occurs, the outcome of the fine search will be any frequency

between zero and we . The p. d. f. is approximately uniform because the

signal has little influence. Thus we write the m. s. e. when a spo t occurs

as
2

2 s
sp 12 (54)

In the general case where the signal frequency is not equal to s s/Z,

equation (54) would become
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2 2
2 s -s
sp 12 2 (55)

The total m. s. e. is the weighted sum of the two contributions,

m. s. e. = (m. s. e. /sport) p + (m. s. e. /no sport)(l-p) (56)

Let the total m. s. e. be w Then we have
e

2 2
2 s s

We p -12 + (l-p) 2 2(57)
2 p r N(N - 1

The RMS error is

RMS = (58)

Next we calculate the probability of a sport, p, and verify that when a

sport occurs all possible I except the correct one are equally likely.

Probability of a Sport. Let Ck = IAk , k = 0 to N - 1, (59)

where Ak was defined above. When both signal and noise are present,

each Ck is a random variable. If the signal frequency is -- and the

noise samples are independent, normal, and zero-mean with variance a 2

then it can be shown that the Ck are independent with Rayleigh distribu-

tion:[ 10]

NC

NC 2
k 2(r

fk(Ck)  NC 2 e , Ck > 0 . (60)
T k *N/2

Let r = N/2 . C has a Ricean distribution:[ 10]
r

N(C 2 + b )r
NC 2 NbC

r 2 r
fr(C ) ~r e I [ C > 0, (61)rr 2 0 2 r-o- o-
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where b is the signal amplitude. Then

1 - p = P {allCk <C }

f P {all C k < C /C x P {C = x} dx. (62)
r k r r r r

x

But P {all Ck < C /C =x} =[ P {C< C /C x }]N -
r k r r r 1 r r

Thus

1 - p f r(x) fk(Y)dY dx. (63)

Sfk(y)dy = f0 -L e -Ny 2 /2(r dy

2 2
1- e-Nx /2r2 . (64)

Then

SNX2- N- N(X +b 2

2-p1 NX 2o NbX1-p 1-e ]e I dx. (65)

After some further work, we obtain

N-1 k
-1 (N- 1) (-1) e -Npk /k+l (66)

(N-l-k)!k! (k+l) e (66)

k=0

and

1 Nm -Np -
1 _ N! (-1)m  m

p =e (67)Nm2 ((N-m)!m!)

It is easy to verify that the limit of p as p -0 is N which is in agree-

ment with our assumptions. The formulas for p given above are neat

closed forms that cannot be summed on a computer because the terms
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N ! (- 1)m(N-m)!m! get very large and-alternate in sign. Thus to compute p it was
(N-m)!m!

necessary to use the integral form and do numerical integration. When Np

is large one can use the first term of p:

N-1 -Np/2 -3
p = e , p < 10 (68)

The calculated values of p are shown on Figure 7

Approximate RMS Frequency Error. We used the above formula for several

values of N as shown on Figure 8. The small circles of the curves represent

the results of simulations. As can be seen, the simulation results agree

with the calculated curves. The curves are similar to the'well known results

for the continuous observation case. See Van Trees, p. 285.

On Figure 8 the simulation for N = 16 each were done with 800 estima-

tions. The ones for N = 128 were done with 500 estimations. Five hundred

estimations will have a sample variance within 12. 5 percent of the true var-

iance with the same confidence.

One would not usuaiiy operate a system at SNR below the threshold.

Thus Figure 8 is useful mainly because it shows the SNR at which the thresh-

old effect starts. All SNR above threshold can be -onsidered to be :nigh

SNR" in the sense that the variance of ML estimators equals the C-R hounds

at high SNR .

Level Estimates

The simulations described above included level estimates according

to equation (33). In every case the RMS level errors were almost equal

to the C-R bounds. Threshold effects were not observed!

Remarks

-We ran the above-described simulations with M = 4N instead of M = N.
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There was no significant difference in the results. Since using M = 4N is

more likely to result in correctly locating the global maximum in B(w) , we

are led to believe that Figure 8 truly depicts ML estimation when the fre-

quency is one half the sampling frequency

The next question is, what about different signal frequencies? We ran

the simulation with M = 64, N = 16, and f 0 = 2120 Hz, using -10, -5, 0, and

5 db SNR. The only point different from the 0 points is the O point on Fig-

ure 8. As before, level estimates did not show a threshold effect.

SUMMARY

This has been a quick trip through a study of the problem of estimating

the frequency and level of a cysoidal signal from a finite number of noisy

observations of the signal. We derived the equations that describe the Cramer-

Rao lower bounds to the variance of estimation errors. Then we derived

the maximum-likelihood estimators and showed their relationship to the dis-

crete Fourier transform. The analysis of the ML estimators revealed some

of their properties. Then we looked at an algorithm suitable for implementa-

tion on a digital computer. The algorithm almost always yields ML esti-

mates. We were able to derive an expression for the threshold behavior

of the algorithm. Simulation results verified the analysis.

The overall conclusion for the case studied is that ML estimates is

feasible and will yield estimates which are as good as permitted by the C-R

bounds (above threshold).

The general cases of real tones (sinusoidal signals) and of many tones

are, in a sense, an extension of the case studied here. The presence of

several cysoidal signals introduces complexity in the bounds, ML estima-
[10]

tion, and practical algorithms. These matters have been studied but

are not reported here.



35

REAL PART OF
A-D CONV.

SIGNAL AND NOISE

COMPUTER

IMAGINARY PART

OF SIGNAL AND NOISE A-D CONV.

FIGURE 1 - PARAMETER ESTIMATION SYSTEM MODEL
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p.d.f.

EXAMPLE P.D.F. OF $

p.d.f.

0 1  .5 I
.//w s  ----

CORRESPONDING RD.F. OF w

FIGURE 2 - Relationship of p. d. f. of 3 to p. d. f. of .
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FIGURE 3 - Shape of B(w) from single complex tone without noise. N is 16.
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FIGURE 4 - An example of B(0) for a single complex tone at zero-db SNR. N is 16 .
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FIGURE 5 - An example of B(w) for a single complex tone at zero-db SNR, showing a sport. N is 16.
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FIGURE 6 - Illustration of search for zero of B'(w)
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FIGURE 8 - Approximate perforiance of ML frequency estimate of single

complex tone at 2000 3I, with unknown phase.
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III. DIGITAL FILTERING FOR RADAR SIGNAL

PROCESSING APPLICATIONS

A novel approach in synthesizing digital filter s for signal processing

applications is presented. This approach is an extension of the frequency

sampling method of nonrecursive filter synthesis. Appropriate time delays

are used in conjunction with a set of parallel complex exponential resonators

whose outputs are summed to yield a desired filter impulse response. This

synthesis method takes advantage of the known signal waveform structure

and results in many fewer digital computations as compared to convolution

processing. This approach is particularly suited to synthesis of matched

filters for radar signal processing and yields matched or approximately

matched filters which simultaneously have very low storage and very low

computational requirements.

I, Introduction

Interest in the application of digital filtering to signal processing is

increasing and numerous publications(Refs. 1- 5) have been written on various

approaches to digital signal processing. In this paper a novel approach to

signal processing digital filter synthesis is presented which takes advantage

of the signal waveform structure and results in a reduction in the required

digital computations.

The signal to be extracted from an interference background often con-

sists of only a few data points as compared to the amount of data to be pro-

cessed. An example of this is found in radar signal processing where the

data to be processed usually consists of thousands of samples, whereas

the signal is composed of several hundred or fewer samples.

The input data to a radar analog signal processor consists of analog
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voltage variations representing signal plus noise (or noise alone) corre-

sponding to a given time or range extent. To use this information in a digital

processor, these voltage variations should be sampled such that there is at

least one sample per range resolution cell (defined as the reciprocal of the

signal bandwidth). These samples are then converted into binary words which

represent the amplitude and phase, or in-phase and quadrature components

of the sampled analog voltages. These complex valued words or samples

are then operated upon to extract the wanted signal from the background

noise.

The radar signal to be extracted from noise generally has a time extent

less than that of the input data of interest, but longer than a range resolu-

tion cell if the signal bandwidth-time (BT) product is greater than one. The

presence and location of the signal in the input data can be determined in an

optimum manner by convolving the complex conjugate of the sampled signal

reversed in time, s*(-n), with the input data, y(n), as followst:

n

a(n) = (j) s* [N-n+j] ; n= 0, 1, 2, ... , J-1 (1)
j=0

where a(n) is the sampled cross-correlation function of x(n) and s*(-n). It

is assumed that there are J range data samples and N signal samples. If

the signal is present at some point in the input data, the cross-correlation

functiont will peak up at that range location.

It can be shown that, for purposes of signal detection and signal parameter
estimation, the signal can be extracted from Gaussian-distributed inter-
ference in an optimum manner by matched or correlation filtering (Ref. 6).
This type of filtering involves the convolution of the signal and data as
described above.

ttSince the X(j); j =0, 1,.... n in (1)are random variables, then each a(n) is
also a random variable. Therefore, the discrete function {a(n);n=0, 1,
... , J- 1} is a sample from an ensemble of discrete random functions.
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This type of signal processing is referred to as "Moving Window Con-

volution Processing" since the finite-length samples signal reversed in time,

s*(-n), acts as a window moving past the range data. Note that each value of

a(n) is formed by one position of the "moving window" relative to the range

data. If J samples of range data are present, there must be J different

positions of the"moving window" in order to produce J different values of

a(n).

Another method of extracting the signal from the range data is to per-

form the filtering in the frequency domain. That is, transform all. of the

range (time) data to the frequency domain by use of the Digital Fourier

Transform (DFT) as follows:

J-1

X(k)= (n) exp 2kn ] k=0, 1,2,..., J-1 (2)
n=0

Then, perform the filtering by multiplying the frequency data by the

Fourier Transform of s*(-n):

Y(k) =S*(k) X(k); k =0, 1,2,...,J-1 (3)

The resulting frequency samples are then transformed back into the time

domain by use of the Inverse Digital Fourier Transform (IDFT):

J-1
a(n) = Y(10 exp i rkn ; n =0, 1,2,...,T J-1 (4)

k=0

if the signal is present, the cross-correlation function , a(n), will peak

up at that range location.

If this method of processing were used, the Fast Fourier Tranqtorm

(FFT) and Inverse Fast Fourier Transform (IFFT) would probably be used

instead of the DFT and IDFT as indicated above. The transformations

accomplished by the DFT and FFT, or the [DFT and IFFT, are identical;

f t See note on previous page.
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the way in which the transformations are accomplished is different (Ref. 7).

This type of processing is referred to as "batch processing", since the

complete set or "batch" of range data is processed at once rather than in

subsets as in moving window convolution processing.

Batch processing is sometimes more desirable than moving window con-

volution processing because many fewer digital computations are required

when the Fast Fourier Transform (FFT) is used. However, the disadvantage

of batch processing is that a large amount of storage is required to store the

thousands of range data points. To date, batch processing for many radar

applications is too expensive to implement because of this large storage

requirement.

On the other hand, moving window convolution processing requires less

storage (only the number of signal samples) but more digital computations

and is, therefore, also very expensive to implement. However, if the

number of required computations in moving window processing could be re-

duced significantly, then the combination of relatively low storage and low

computational requirements would make it a desirable approach to digital

signal processing. Hence, it is of interest to consider ways of reducing the

number of digital computations required in moving window processing.

In the following sections of this paper, a synthesis technique is dis-

cussed which takes advantage of the signal waveform structure such that

the number of digital computations required is at least an order of magni-

tude lower than that required in moving window convolution processing.

In addition, the storage required with this technique is about the same as

in moving window convolution processing.
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In order to explain this technique clearly, several methods of synthe-

sizing digital filters are briefly.reviewed in the next section of this paper.

II. Methods of Nonrecursive Filter Synthesis

In the digital filter synthesis problem, the .desired impulse response

is assumed to be known and is represented by the sequence

{h(n): n = 0, 1,2,... } (5)

where each h(.) is complex valued. *This discussion will be restricted to

the synthesis of nonrecursive digital filters which are characterized by a

finite-duration impulse response such as is required in-moving window pro-

cessing. Hence, the impulse response will be represented by a sequence of

N complex numbers

{ h(n): n = 0, 2, .... , N-1} (6)

A straightforward method of synthesizing a filter with this type of im-

pulse response is the convolution or "tapped delay-line" filter realization

illustrated in Figure 1. In this realization the N weights are the complex

values of the N samples in the filter's impulse response, and each of the

N-1 delays used corresponds to the delay between the filter impulse re-

sponse samples.

Now, if the impulse response is required to be

h(n) = s*(N-n); n = 0, 1, 2,. .. , N-i (7)

then the output of the convolution filter of Figure 1 is related to the input

data, (n), as given by Equation (1). Hence, this filter would perform the

moving window processing desired.

*In radar/sonar signal processing the number sequences encountered
are complex valued, hence, the need to assume h(.) is complex.
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The number of complex multiplications required with this filter is N. K

where N is the number of samples in the signal (and in the filter impulse

response), K is the number of data samples to be processed, and where the

number of data samples is assumed to be greater than the number of signal

samples (K>N).

Now let us consider another method of synthesizing a digital filter with

the impulse response of Equation (6).

Since the impulse response is of finite duration, it can be represented

in terms of its Discrete Fourier Transform (DFT) ({H k: k =0, 1, 2,... ,N-1}

as follows:

N-1

h(n) = Hk exp j2 kn ; n=0,1, 2,..., N-1 (8)
n=0

The z-transform of the sequence of (6) is

N-1

H(z) = h(n) z-n (9)
n=0

Substituting (8) into (9) and interchanging sums, the sum over the n index

can be evaluated in closed form so that

N-1H -NN-(z) Hk - z (10)

1- z exp

Evaluating (10) on the unit circle where z = exp [ j2rf T] leads to the

frequency response

N-1
N- Hk - k] sin Nrf

H(f) = exp [ -j(N-1)rf ].exp (11)
k=0 sin 7r[fT- N

The symbol T denotes the time spacing of the number sequence in (6) and

is often assumed to be unity. Note that when z exp j. 2 ] H(z) = Hk
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or, equivalently, when f = N , H(f) = Hk

The interpretation of (10) and (11) is as follows: the frequency resoonse

of the digital filter which is described by the complex impulse response in

(6) is a sum of sin Nx frequency responses, each with a complex weightsin x
k

Hk and a center frequency N- where k = 0, 1, 2,... , N-, as illustrated in

Figure 2. A realization of the filter of Equation (10) is shown in Figure 3.

Each block in this figure represents a zonal filter with the appropriate cen-

ter frequency and bandwidth. Since the term (1-z ) is common to all of

the filter functions, it can precede the filter bank and be shared.

The parameters needed to completely specify the digital filter are either

the sequence { Hk; k = 0, 1, 2, ... , N- } and the center frequencies

fk - T ; 1 = 0, 1, 2, ... , N- 1} or the sequence {h(n);n =0, , 2,... ,N- 1

and the time delay between samples, T . If the desired frequency response

is known, the filter weights are determined by sampling the desired frequency

response at the frequencies fk; the complex values of these frequency samples

are then used as the filter weights, Hk. On the other hand, if the desired

impulse response is known, the filter weights, H k, can be determined by use

of the following equation, which is obtained from (8):

N-i

Hk = H(n) exp [-2kn] ; k =0, 1, 2,..., N-1 (12)
n =0

Note that the impulse response of the filter of Figure 3 is exactly that

given in Equation (6) if the.complex weights are selected correctly. In other

words, the samples taken from the frequency spectrum of h(n) are adequate

to completely describe the filter frequency spectrum.

It will be useful for later discussions to consider in more detail the

impulse response of the realization given in Figure 3. The impulse re-
thsponse of the I block or subfilter of this filter is
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exp[]; n= 0, 1,2, . = 0, 1, 2, .. N- 1 (13)

-N
which is of infinite-time duration. However, when the term (1-z - N ) is in-

cluded with the Ith subfilter such that the z-transform of that filter is

-N
(14)

1- z expn

the corresponding impulse response is

exp j n ; n= 0, 1, 2, ... , N-I ;= 0,1,2,... N-1 (15)

which is of finite-time duration. Therefore, the impulse response of each

subfilter or block of Figure 3 can be thought of as a time response with a

rectangular amplitude and linear phase function that is sampled at the time

instants nT, n = 0, 1, 2,..., N-1. The overall impulse response of the

digital filter is the weighted sum of the N time sequences described by (15),

where 9 runs from 0 to N- 1. The composition of the composite filter re-

sponse is illustrated in Figure 4, where N is taken as four.

In some applications, one would expect some of the complex weights

{ Hk;k =0, 1, 2, ... , N- 1} to be zero. For example, if the desired impulse

response {h(n);n =0, 1, 2, ... , N- 1} represented data with a small band-

width (the complex value of the sequence varies slowly with increasing n),

many of the complex weights would be zero. A very special case would be

where the magnitude of the complex impulse response did not vary with in-

creasing n and the phase of the impulse response increased with n in a

linear fashion; that is, the desired impulse response is given by

Hk " exp[I jN] ;n=0, 1,2, ... , N- 1 (16)

where the index k may take on any one of the discrete values 0, 1, 2,.. , N-1.
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The resulting filter realization would have only one block or subfilter, as

indicated in Figure 5.

The number of complex multiplications required in the filter realization

of Figure 3 is 2 - N. K, where N is the number of signal samples (and filter

impulse response samples), K is the number of data samples to be processed,

and K is asumed to be larger than N. The number of complex multiplications

required for each subfilter (including the complex weights) is 2. K. There-

fore, assuming that all N of the subfilters are needed, N. (2. K) complex

multiplications are required in the composite filter realization.

In comparing the two filter realizations discussed thus far, one concludes

that the use of the convolution filter realization of Figure 1 requires fewer

multiplications than the frequency response realization and is, therefore,

simpler and cheaper to implement. However, a further consideration of the

frequency response filter realization leads one to a third filter realization

that requires many fewer multiplications than even the convolution filter for

some types of radar signals. This is the subject of the remainder of this

paper.

III. Synthesis of Specialized Digital Filter Response

In light of the discussion of the previous section, consider the digital

filter illustrated in Figure 6. This filter is very much like the filter of

Figure 3 except for the time delay following each subfilter. However, the

impulse response of this filter is much different from the filter of the pre-

vious discussion.

The z-transform representing this filter function is

L-1 - N

F(z)-N/L. F 1- zF ) = z -(17)
I=0 1- z" exp N L
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where N is the number of samples in the filter's impulse 
response, L is the

number of subfilter, and l- is assumed to be an integer. Evaluating (17) on

the unit circle where z = exp (j27f ) leads to the frequency response

N L-1 F
F(f) = exp -j L [-- Yl f .exp j 7r1 2 f L N

sin N rfr
(18)

sin 7r f I--1 LL

When z = exp j2 r , F(z) =F; or, equivalently, when f =,[ F(f) =F

The inverse z-transform of (17) yields the impulse response of the

digital filter in Figure 6.

0L N

j 2 7rnL
L N N N ZN

I N n L-F )' e N ; n , +1, ... , -

(F 2  L N 2N ZN 3N

1( 2 ) e ; n = - , - +  .. -

j2r(L-1)Ln N N

(F 1  )' e N ;n = (L-l) (L-) - +, , N-(19)
(FL- 1  N'-

The magnitude and phase of this number sequence is illustrated in

Figure 7. Those familiar with waveforms used in modern radar will re-

cognize this filter response as that which is required to optimally process

a Stepped Frequency Modulated (SFM) waveform (Ref. 8). As will be illustrated
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in the following example, the filter of Figure 6 optimally processes, in a

moving window fashion, the SFM waveform with many fewer multiplications

than required by the convolution filter of Figure 1. Hence, Equation (17),

which is realized as the filter of Figure 6, represents a method of filter

synthesis which, for the SFM waveform, fulfills the goal set forth in the

Introduction: to reduce the number of multiplications required in moving

window processing. To illustrate this concept, consider the following ex-

ample.

IV. Optimal Filtering of the Stepped Frequency Modulated Waveform

Suppose it is desired to synthsize a digital filter that is matched (in the

signal processing sense) to the stepped frequency modulated waveform of

Figure 8. In this figure, N and L are assumed to be 1024 and 16, respectively.

The bandwidth of this waveform is , where T is the basic time delay of

the filter. The magnitude of the frequency spectrum of this waveform is

shown in Figure 9, and is repetitive with period 1 . The phase variation

with frequency, which is not shown, is nearly quadratic.

The filter which is matched to this waveform is shown in Figure 10.

Its impulse response is the conjugated time-inverse of the waveform shown

in Figure 8. The filter's frequency response is the conjugate of the wave-

form spectrum shown in Figure 9, and is composed of 16 sin Nx/sin x

responses, each with unity weight. Figure 11 illustrates the composition

of this filter spectrum. The ripples in the pass band and stopband are due

to the sidelobes of the various sin Nx/sin x responses. Also note that nulls

exist in the stopband of the filter where every sin Nx/sin x response has

zero value.

The time response of this filter to the stepped frequency modulated

(SFM) waveform of Figure 8 is shown in Figure 12. This response, which
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is the convolution of the impulse response of the filter of Figure 10 and the

SFM waveform illustrated in Figure 8, is very similar to a sin x/x function

in the vicinity of the mainlobe response with the accompanying high sidelobes.

If it is desired to suppress these sidelobes, than amplitude weighting can be

used. That is, the filter weights F ; I = 0, 1, 2, ... , L-1 can be selected so

that the time response is similar to that in Figure 12, but with lower side-

lobes. As an example, suppose the sin x/x sidelobes are to be lowered to

30 dB below the mainlobe. Sixteen weights which are obtained by sampling

the Taylor Weight function (Ref. 9) can be used in the filter of Figure 10 to

yield the time response of Figure 13.

The number of multiplications needed to process a sequence of samples

with the filter of Figure 10 is L. K, or 16K where K is the number of samples

to be processed. If the filter realization of Figure 3 had been used, the num-

ber of multiplications required would be 2 ' N . K, or 2048K.. Hence, the

savings in multiplication for this particular example are a factor of 128. If

nonunity weights are used with the filter of Figure 10, the number of multi-

plications required will be 2 - L. K and the savings factor will be 64.

Of course, the filter matched to the waveform of Figure 8 could have

been represented with fewer than 1024 points, since the waveform is over-

sampled by a factor of four. For, example, the filter impulse response

could have been represented by 256 points, in which case the resulting

multiplication savings factor would be 3Z. However, the frequency response

would look different than that shown in Figure 9. The waveform spectrum

would be spread out over the repetition period so that the filter would be

essentially an all-pass filter with an approximately quadratic phase function,

and would have to be preceded with a linear-phase low-pass filter.
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V. Optimal Filtering of the Linearly Frequency Modulated Waveform

This technique can also be used to synthesize digital filters matched to

other important waveforms. For example, of great importance to radar

signal processing is the linearly frequency modulated (LFM) waveform

(Ref. 8). The magnitude and phase characteristics of this waveform are very

si,nilar to those of the stepped frequency waveform illustrated in Figure 8.

The big difference in the two is that the LFM waveform has a continuously

quadratic phase function in time, whereas the SFM waveform has a piece-

wise continuous phase function that is only approximately quadratic. Be-

cause of the similarities of these two waveforms, one would expect that the

filter of Figure 6 could be modified to optimally filter the LFM waveform.

If in the filter of Figure 6 there were more than one subfilter preceding

each delay, as shown in Figure 14, than greater freedom in selecting the

complex-valued impulse response would exist. In fact, if there were N/L

subfilters preceding each delay, then any complex impulse response defined

by (6) could be achieved by selecting the appropriate weights.

F ,k = ;=0, 2, ... , L-l;k=0, 1, 2,.1 (20)

which are related to the impulse responseI h(n); n =0, 1, 2, ... , N-1 as

follows:

(a +1). -'-- 1L - kn
F Rk N h(n) exp [ N/L I = 0, 1,2,... ,L-1 (21)

n=1-L
k =0,1, ,..., -1

Hence, specific weights can be chosen so that the filter of Figure 14 is

matched to theLFM waveform.

The number of multiplications required to process a sequence of input
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samples with the filter of Figure 14 is K. [--] per subfilter for a total of

2. K. N for the composite filter (including the N frequency weights). This

is the same number of multiplications as required by the convolution reali-

zation of Figure 3. Consequently, this realization has no advantage over

that of Figure 3 if a filter perfectly matched to an LFM waveform is required.

However, if a filter that is approximately matched to the LFM waveform is

acceptable, then this synthesis approach is advantageous. For example, the

filter of Figure 10 which only requires 16. K multiplications is almost matched

to an LFM waveform of length 1024T and bandwidth 1/(4T). The phase func-

tion of the SFM filter is not exactly quadratic, as is desired for a filter

matched to an LFM waveform. However, the mismatch is small, and for

some applications the SFM filter of Figure 10 might ge adequate for an LFM

waveform.

If a filter which is sligh'ly mismatched to an LFM waveform is accept-

able, but less mismatch is desired than that provided by the SFM filter,

then the filter of Figure 15 migh be considered. In this filter, three sub-

filters per subsection are used. The complex weights can be chosen to ap-

proximate the LFM quadratic phase function, but with less mismatch than

with one subfilter per subsection as in Fi gure 10. The number of multipli-

cations needed for this filter is 3 - L - K, or 48 - K. Hence, the savings in

multiplications for this filter, as compared to the filter of Figure 7, are

2048/48, or approximately 43.

It is obvious that the LFM quadratic phase function can be approximated

with increasing accuracy by increasing the number of subfilters per subsec-

tion. Of course, the multiplications savings factor decreases with the in-

creasing number of subfilters. The limit of this approach is when all (N/L)

subfilters per subsection are used, in 'which case the filter is matched to
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the LFM waveform and 2. N . K multiplications are required.

VI. Conclusions

Nonrecursive digital filters can be synthesized by several techniques,

as described by various authors. Furthermore, the complexity of the filter

may depend on the synthesis technique chosen. This paper has presented a

technique for designing some types of finite-duration impulse-response di-

gital filters which require many fewer multiplications than other known

techniques. Any desired finite-duration impulse response can be synthe-

sized with this approach. However, the savings in multiplications depend

on the impulse responses desired. For some well-known radar applications,

such as pulse compression, the multiplication savings factor can be very

large. The examples discussed in this paper indicate that the savings in the

required multiplication rate can be factors of a hundred or more.
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Figure 1. Convolution Realization of Nonrecursive Digital Filter



60
A.,,2 :

10 11 
11

- 112 n-2 , H2

_ t H

II N

H A8.,2J4

I1 " NZ w

-1 2-

Fu 1 N-1I~iur 3 Frqunc Iispns Italzai*



61

A8525

HoWO OWO HOWO HOWO0H ' H H 00 H 0

0 1 2 3

H 1W H 1
W 1  H 1 

W 2  t 1
W
3

0 1 2 :I

W1 11W 2 11W 4 .,I I I I

0 1 2

II wO II. 11 W 6  I.,W

0 2

I I In

0 1 2

COMPOlITE FILTER IIESPONES

0 I0

h() =( W 11 W 2 11 )/4

h(2) -(II 0 11 II W4 
+ ll (

h(3) =(11 WO + lilW3 + II.,11 + ./ 4

A
W = exp (j21r/4)

Figure 4. Composition of Digital Filter Impulse Response (N 4)



62

f I A 526
N  1-

1 Z wzl~

(a)

+

-N -1 k
x~ zW

(b)

Figure 5. Digital Filter Consisting of One Subfilter

A8527
1 Fo/(N/L) o

-1 W0

1 1./(N/L) - N

L-1 L.z

Figure 1 D l* / L Fz a

w*

vxp 02TrL/N) *

F /(N/L)
1 L-1 L-)

I -1...1 I LF-z W

Trimure 6 A Snacializnd Dicrital Filter Rtealization



63

A8528

iF N 2 IF 1
N0 N L-1 N

t t t T T  , T11 1t t t
0 N 2N 3N (L-1)N N

L L L L

TL(L-1)

, r(L-1)(L-2) -

47-

6.9

27 -

o. i ' I , , ' '/ I I
N 2N 3N (L-1)N N
L L L L

Figure 7. The Impulse Response of the Filter in Figure 6



64

... A8530

1.0 I

1 (n)

0 I I I I I I I I I I n/64
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

240r /

220 n

220r -

180w-

a 1607r

S80 -

407-

207r

0 I I I I I I P n/64
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 8. A Sampled Stepped Frequency Modulated Waveform (N = 1024)



A8531

-10-
m

-20-- a
L.

-30-

-40-

0 B l/r
FREQUENCY

Figure 9. Magnitude of Frequency Response of the Sampled Stepped Frequency Waveform



66

A8532

-1 - z

-
- I W

lzz-1W-

W exp (j2r/16)

I 

I- 

W
- 1 5

Figure 10. Digital Filter Matched to the Sampled Stepped Frequency Waveform

... ........ A8533

Io I I

I I I

I II

I- I I

Figure 11. Composition of the Frequency Spectrum of Figure 9



C)

C)

c?

J-CJ

3

C'

C)

O T 2T
TIME

Figure 12. Time Response of Digital Filter to Step Frequency Modulated Waveform
Uniform Amplitude Weighting



C)
A8535

C)

C-D

CD
F-D

c) Tt-- C'

Co.

TIME

Figure 13. Time Response of Digital Filter to Step Frequency Modulated Waveform

Taylor Amplitude Weighting (-30 dB, n = 6)



69

1 O, Ab52/NU

-
1  1  zO

1-z W -

0

l L/N 1

z-
01,' / O /

1 FI1,1/ N

-1 1 zF 1-z W o

-N/L

-- N 1 N

1 -z-1w
L  

F /N1,-E 1

1 1 ,.0N

1-z

1 1, 1

1- W
1  z L

'L

N

I z
- 1 W L F /N

_ 1* L-1, "1 - 1



70

1 FO,0192 A85.7
1 - z-

1 WO

F' "0, /192

1 0, 19
- - - I  1 z- 9 6 0

-1 -14
1-z W

1 1,01/192
-1 11 Z- 896

1

1 - z" W "

,,/192 W exp 027r/64)

Figure 15. Digital Filter Approximately Matched to the Linearly Frequency
Modulated Waveform



71

REFERENCES

1. Gold, B., and Rader, C. M., Digital Processing of Signals, McGraw-

Hill Book Co., New York, New York, 1969.

2. Helms, H.D., "Nonrecursive Digital Filters: Design Methods for

Achieving Specifications on Frequency Response", IEEE Transactions.

on Audio and Electroacoustics, Vol. AV-16, September 1968.

3. Gold, B., "Signal Processing Hardware for General Purpose Compu-
ters", NEREM Record, 1969.

4. Rabiner, L.R., Gold, B., and McGonegal, C.A., "An Approximation

Problem for Nonrecursive Digital Filters", IEEE Transactions on

Audio and Electroacoustics, Vol. AU-18, June 1970.

5. Rader, C. M., and Gold, B., "Digital Filter Design Techniques in

the Frequency Domain" , Proc. IEEE 55, 2, 149, 1967.

6. Van Trees, H. L., Detection, Estimation, And Modulation Theory -
Part I, John Wiley and Sons, Inc., New York, NY, 1968 .

7. Brigham, E.O., and Morrow, R.E., "The Fast Fourier Transform",
IEEE Spectrum, December 1967.

8. Cook, C. E., and Bernfeld, M., Radar Signals - Introduction to Theory
and Application, Academic Press, 1967 .

9. Taylor, T. T. , "Design of Line-Source Antennas for Narrow Beam-

width and Low Side Lobes", IRE Transactions on Antennas and Pro-

pagation, January 1955.



72

IV. ON THE OUTPUT OF MULTIPLE SERVER QUEUES

WHERE NOT ALL SERVERS ARE IDENTICAL

It is known that if the input to an N server queue, with the servers

having exponential service time distributions with identical means 1/cr, is

Poisson with paramter X, then, after attaining equilibrium, the output is

also poisson with parameter X . It is shown in this paper that as long as

the servers have exponential service time distributions, even if not iden-

tical means, and equilibrium is attained with a Poisson input of parameter

X , the output will also be Poisson with parameter X . Furthermore, for

the output of each individual server to be Poisson, it is necessary and

sufficient that the propability of a particular server being busy, conditioned

on the number of customers in the system, be equal to the probability of

any other server being busy, under the same conditioning. The output from

server i will then have parameter X --- and be independent of the output

from the other servers. However, for such equiprobable conditions to

exist, restrictions must be placed on the dispersion of the mean service

times of servers.

I. Problem Description

The problem of describing the output of a queue has been given con-

siderable attention, primarily due to the problem's application to tan-

dem queues. However, in most of the literature that attention has been

focused on queues where the N servers have identical service time dis-

tributions and on the output of the total system rather than on the output

of any individual server. In this paper the output of an individual server
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is examined. The motivation for this examination is the consideration of

tandem queues in networks where the output of each server may feed into a

different queue than the queue fed by the output of another server. In parti-

cular, modeling of communication networks for message transmission from

a terminal to a set of processors over channels of fixed capacity may be

posed as an arrangement of tandem queues where the channel capacities and

message lengths determine the various service times of the servers.

The general queueing system for this paper is shown in Figure 1. The

input is Poisson with parameter X. Each server i has an exponential service

time distribution with parameter r. , not necessarily all the same. P. J.

Burke has shown that if the service time distributions are all identical and
N

a-.=No> X
i= 1

and equilibrium has been attained, the output of the overall system will be

Poisson with parameter X, same as the input. Edgar Reich 2 has also shown

this result by arguments different than those of Burke. In this paper the

basic strategy of Burke is followed to show that the output from the overall

system is Poisson even if the servers are not identically distributed, so

long as equilibrium is attained and the system is Markovian. Furthermore,

for the output of each individual server to be Poisson, it is necessary and

sufficient that the probability of a server being busy, conditioned on the

number of customers in the system, be equal to the probability of any other

server being busy, under the same conditioning. The output from a parti-

cular server i will then have parameter X -i and be independent of the out-0-

put from the other servers. However, for such equiprobable conditions to

exist, restrictions must be placed on the dispersion of the mean service

times.
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II. Equilibrium Probabilities

In order to pursue the anal-sis it is first.necessary to determine the

equilibrium probabilities describing the queue. The probability of a parti-

cular server j being busy conditioned on i customers in the system will be

represented as

Q = Pr (customer in a.j i customers in system)

The mean service time of the system, conditioned on i customers in the sys-

tem, is.defined as

N

j=1

Finally, define the equilibrium probability of the state of the system as

Pi = Pr ( i customers in system)

The equilibrium relations describing a system of N servers may now be

written as below.

xPO = P1

(X+. )Pi =XPi- + i+l Pi+l 1< i<N-2

(1) (X+4N-1) N-1l PN-2 +  PN

(+) Pj Pj- + T Pj+1 N < j < 00

These equations are subject to the constraint
00oo

(2) .=
i=0
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X X
Define =- , , 1< i< N-1 , and 0 = 1 . The solution to the above

0- i . O

equations (1) subject to the constraint (2) is then easily found to be

P.= ~.P 0  1< j<N-i1
Si=0 - --

N-I
3 i=I 0- --

(-)
P

0 N-1. N-2)

j=0 i=0 =0 i=0

III. Output of General Queue

The equilibrium probabilities may be interpreted as the probabilities

of finding the system in a particular state at any randomly selected instant

of time. Central to the developments in this paper is the result that the

probabilities of finding the system in a particular state at a randomly se-

lected instant of time drawn from the set of instants immediately after de-

partures are also equilibrium probabilities. This result is stated below as

a lemma.

Lemma 1

The state of the general queue, subject to Poisson input and having

attained equilibrium, after a departure is described by the equilibrium

probabilities.

With i i replacing T for 1 < i < N- 1 the proof of the lemma is completely

analogous to the demonstration of a similar lemma by Burke.

The above lemma and replacements can be used to demonstrate the

following theorem which is a simple extension of Burke's theorem.
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Theorem 1

The output of the general queue with Poisson input having parameter X,

and after attaining equilibrium, is also Poisson with parameter X .

The demonstration is again completely analoguous to the demonstration

by Burke.

IV. Output of Individual Server

The principal theorem of this paper pertains to the output of the indi-

vidual servers in an N server queue. The theorem is stated below.

Theorem 2

For the N server queue with all servers having exponential service

time distributions, but not necessarily identical means, and having a Poisson

input with parameter X, and having attained equilibrium, the output of each

individual server will be Poisson if and only if it is equiprobable that a cus-

tomer be in server i as in server j, for any i,j, conditioned on 1 customers

in the system. The Poisson outputs will each be independent of all the other

outputs and will have parameter X Ti0-

The proof of this theorem will be presented in two parts, the first part

showing suffciency and the second part showing necessity.

For ease of notation and without loss of generality, when referring to

an individual server, server one with exponential service time parameter

1 will be chosen. It will be easily seen that extension of what formulas

are based on referring to an individual server from server one to any other

server i is only a matter of notational complexity.

The sufficiency part of the proof follows very closely to Burke's proof. (1)

1 Consequently, only the significant diviations from the work of Burke will
be given.
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The necessity part of the proot will be more involved. The general solu-

tion of the system of equations will be expanded as a matrix exponential,

and in order to have a Poisson output various summation equalities will

result. These equalities will then be shown to necessitate the conditions

of the theorem.

V. Sufficiency

The notation of Burke is redefined to pertain to an individual server

rather than the general system. Let t 0 be any randomly selected instant

of time, (later taken to be zero for convenience.) Let L be the length of

time from t 0 to the instant of the next departure from rl , and define

Fk(t) = Pr [ n(t) = k, L> t - t o

Note
00

I Fk(t) = F(t) = Pr (L > t - t 0 )

k=O

and

Fk (t0)=Pk

A new symbol, interpreted as the portion of the conditional mean service

time i. contributed by the server j, is defined as

i i

Note
N

j=l

Before proceeding with the sufficiency part of the proof a lemma is given.

The lemma is quite comparable to the lemma stated earlier.

Lemma 2

If it is equiprobable that a customer be in server i as in server j, for
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any i, j, conditioned on 1 customers in the system, then the probabilities

describing the state at any random time selected from the set of departure

instants of server i are the equilibrium probabilities.

The conditions of the lemma are simply

S= V i, j, k
j Qk

Thus

ti iN
N . i.

Qa-

The following equations describe the system.

F 0 (t+dt) F 0 (t)(1- dt) +Fl(t)(l- dt)( - ) dt

Fi (t +dt) = F l(t)(X dt)( 1- i Idt) + Fi(t)(l- dt)( I- idt)

+ F 1(t)(1-Xdt) ) dt ]

FNl(t+dt) =FN 2 (t) (X dt)( -N- 2 dt) + FNl(t)(1- X dt)( 1- N- idt)

(7) + FN(t)(l-X dt) [ (a -ol) dt ]

FN(t+dt) = FN-1(t)(X dt)(l- N-1dt) + FN(t)(l-X dt)(l- -dt)

+ FN+l(t)(l-X dt)[ (c - Ti) dt ]

Fj(t+dt) = F._ l(t)(Xdt)(l-c dt) + F.(t)(l-Xdt)(l-crdt)
J J-
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+Fj (t)(l-Xdt)[( -ffl)dt ]

N+l < < oo.

Performing the usual manipulations, these equations become

F = -XF 0 +( 1- 1 )F 1

F. = F. - (+ gi)F + (4il- i +1 )F 1 < i< N-21 -1 i I i+

(8)
FN- 1 = FN 2 -(X + N_ 1 ) FN- 1 + (0 -a1 ) F N

Fj.= XF.j-1 - (X+ a) F.j + ( - 1) Fj + N< j < oo

This is a system of first order, linear, homogeneous differential equations

subject to the initial conditions Fk(0) = Pk' where t 0 has been chosen as

zero for convenience. The solution of this system of equations is unique

and it can be easily verified that with Qj = the solution is

0-.

Fk(t) = Pk e

The remainder of the proof of the lemma is quite analogous to Burke's

demonstrations..

To proceed with the sufficiency part of the theorem's proof some

symbols are redefined. Let L be the length of time from any departurze

instant of 'l, i. e., the interdeparture interval length of o 1, and n(t) be

the state at time t after some arbitrarily chosen departure instant of n '

td , where for convenience td is taken as zero. Define
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Fk(t) = Pr [ n(t) = k, L > t ]

and note
oo

EFk(t) = F (t) = Pr (L > t)
k=0

With this notation the set of differential equations (8) can be seen to describe

the system, and with Q = Q i the solution to the equations is
the system, and with aj k

-X t
Fk(t) = Pk e a

Following the format of Burke this is easily used to show that if Q = Qk
"T

for all i, j , k, the output is Poisson with parameter .

Finally note that by theorem one the overall output is Poisson with

parameter X and hence has the characteristic function

I (s) = e

From the results of this section, the characteristic function of the 1th out-

put is
_ x _ + > _-L--

1

With N N
N -X a.
II . (S) = e ~a
i=l 1 i=l i=l

-X +Xs
- e

it is easy to see from the convolution theorem that all of the outputs are

independent of each other.

Necessity

To prove the necessity part of the theorem, it will be assumed that the

output from the server is Poisson with parameter i
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The differential equations describing the system may be written in

matrix notation as

(10) F' = AF

with

- i (

x -(2+p1) (2 -  1

0 x -(X+p 2 ) (p 3  1 3)

A=

0 0 _(X+k) (k+ q 1k+l

0 0 0 x -(+) (r- r)

The system of differential equations is subject to the initial conditions

F (0) = P

where t 0 is a randomly selected instant of time conveniently taken as zero

and P is the equilibrium probability vector

P0

It is well known that the solution to these equations may be written as

F = eAtp

+At + A t + ' ). P

= P+ APt + A 2 P t 2 + ...
2!

The product AP can be shown to be



8Z

-x-P
C1 0

1+1

I I-

AP =

- P
o" N-i

a' k

Since

E F k (t) = Pr(L > t)
k

and the outputis Poisson, implying

Pr(L > t) = ePl t

2
2!

Therefore,

ZAP = P
-1

k

and thus it can be shown that

N-2 k+1
p =1 +X 1, ( ) p

1=0 k+ 1 k

As before, the characteristic function of the overall output is

-X+Xs
4 (s) = e

and the characteristic function of the output of each individual server is
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N-2 Ik+l N-2

- _1 + .P P k1 + )Tx+x
Di(S) =e o k+l k=0k=0 J k=

rlk+l.

k+1

Thus again the product is found to be

N -X+Xs
II . (s) = e = ) (s)
i=l 1

and therefore the individual outputs must be independent of all the other

outputs.

Having established the above result, the remaining portion of the proof

will proceed under the assumption that the individual outputs are each

Poisson and independent of the other outputs.

Combining previous results with the independence assumption gives

N 2
II P [Li>tln(t)=k =e =-t + + 0 (3+
i=l

where by O (t3 +) is meant terms involving the third or higher powers of t.

Now

Pr L > tI n(t)k] PL, > t, n(t) =

Pr [n(t) = k

and it can be shown that
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1 2 1 2
2 1 71 2-1 P

L e2 
0  +A1 2 0

1 +1 f+2 (2+1 +2\ 1 +1
2 1 1 11 1 2 1 i+ 1 1

+1 L+2 e @I+1 £+2 e t 1+1 e

A2P 2 N-1

X2 PN + X.N_( - l- PN-l2 N- 1 - 1 - N-

2

X P
2 N

.2
LT

1 p
2 k

AP and A2P can be used to form a matrix exponential expansion in

terms of O(t 3 +). Continuing this expansion with the previous exponential

expansion gives

N k+l k+2 N-1 N k+1 k+ 1
i i +2 i 2 = 0< K< N-3

+2k1 .k+2 2.-
i=1 i= 1 j= i+1 k+1

and

N N-i N-i N N-i N-I
- i 1 +2 t7 I = 1

N-1
i= 1 i= 1 j=i+1 ( N-1)

Note
k+1 k+k+1 k+1

1= = + 22
i=1 k+ 1 i= 1 k+l i= 1 = i+1 Sk+l)



Taking the difference gives

k+1 k+2 k+l
i 2 i

i= 1 Hk+l "k+2 I= 1 k+l

and

N-1 N-1
N i . N N N

] 1 N- 1 - 1 1 = N-

These expressions are most conveniently written as vectors. Let

k k k
r) 1 27 _ N

k k "kk

T 2 NY (T.

Then the expressions become

Xk * Xk+l Xk * Xk 1<k<N-2

XN-1 Y XN-l.* XN-1

where the * indicates the dot product (inner product) of the vectors.

The vectors are also subject to the constraints

N
X =1 X > 0

i 1 k, i k,i -

N
Y. = 1 Y. > 0

The constraints imply the vectors must all terminate on the nth

dimensional hyperplane P defined by the N points
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P. = ( 6 6 6) < i < NS li 2i Ni

where 6.. is the Kronecker delta. The vector relations may be

restated as

Xk * (Xk+l - Xk) = 0 1 < k < N-2

N-1 *(Y-X )= 0

Thus, either X k+l is the same as X k or the difference Xk+l - Xk

must be perpendicular to X k , for 1 < k < N-2, and similarly, either

XN-1 is the same as Y or Y-X N-1 is perpendicular to X N- 1  How-

ever, since each vector terminates on the plane P, their difference

can be seen as a free vector lying in the plane P. Hence , either

X k+1 must be the same as X k , or X k must be perpendicular to

the plane P . There is only one vector perpendicular to the plane P

and that is the vector

I = (1/N, 1/N, ... , 1/N)

Therefore, either Xk = Xk+ or Xk = . Thus, by the above re-

lations the vectors can be split into two classes.

i. * 0 < i < N-1 & * * Xk = ± 1 < k < i

X = Y i< k < N-l

Assume i 4 0. Then

X 1 = X ... = X

Xi+ = X =... = X = Yi+l 1 N
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The following relation can also be shown.

X1 0 + X2 P + ... + Xn- N-

SX2 P 0  XP I + ... + Xn- P N-3+ YP

For ease of reading the derivation of this relation will not be given until

after the proof is completed. The above relation may now be rewritten as

P0 + "' +  J P i + YPi+ + " + YPN-2

PO * + ' ij i+1+Y N-2

=J p 0
+  + +± Pi-l + YP i + YPN-2

or

P. = YP.
1 1

or
=Y

Therefore, unless Y = (1/N, 1/N, ... ,1/N), there is a contradiction

and i = 0. Hence

Xk =Y Vk

or
k

?7i  .
1 1

4xk  cr

But
k k

7. c Q

1 1i
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Therefore

1 i1 1
Lk "

or

Qk i, k

Since the right hand side does not involve the index i, we have Q k k
i j

for all i, j, k, thus completing the proof.

It remains to demonstrate the relation

X 1 P 0 
+ X2 P + ... + XN-1 PN-

= X P + X3 " + XN-I N-3 N-Z

The demonstration involves combining the criteria for the outputs to be

Poisson and the criteria for the outputs to be independent. First the

criteria for the outputs to be Poisson will be derived.

As before, define

Fk(t) = Pr [ L 1 > t, n(t)= k]

The system is then described by the system of differential equations

F = AF
- 1-

subject to

F(o) = P

where A is the same as earlier
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The solution is then known to be

_F (t)= eA t P = (I +A2 2 + )

A tt

= P+A Pt + A +...1 1- 2!

where A 1 P and A1 P are the same as before.

Now

Fk(t) = Pr(L > t)

and if the output is Poisson,

Pr (L 1 > t)= e = 1 -It+ + t

Thus

2
Pr(L > t) = ( + A Pt + A 2 P t +

(P 1 1- 2!

t + 2 tlt + 1 2! - '"

These results imply

( A 2 = P

Taking the respective sums and comparing leads to

k+1 k+
r1 i N-2 h 1 _ 1o tNh o2 Gl

N-3 I 

Zo k+k k

This is the criteria for the outputs to be Poisson.
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Now the criteria for the autputs to be independent will be derived.

Define

Gk(t) = Pr [L 1 >t, L2 >t, ... , LN-1 >t, n(t) = k]

and note

Gk (0) = Pk

Gk(t) = Pr(L 1 > t, L 2 >t, ... , LN-1 >t)

The above function is different from the other functions defined earlier

in that it deals with N-1 of the N servers instead of an individual server

or all the servers. The following equations describe the system.

S= - X G + G

G. X G. X + G+ l 1 < i < N-Z
G i = k Gi-l 

( + i) Gi + f N Gi+l N-2

(11)
*

GN- = X GN-2 - (X + N-)GN-1 + N GN

G' = XG. - ( +)G. + G. N < co
j j -l N 1

These equations are subject to the initial conditions

G(0) = P

The system of differential equations (11) may be written in matrix

notation as

(12) G= BG G(0) = P
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where B is the matrix

-X 1

2
x -(× +l)  N

3o x -(X+ ) )N

B=

i+l
0 0 x - (X + 4i )  N

0 0 0 -(X +pN1) N

0 0 0 0 X -(X+T) T

As before, the solution is known to be

G= e B t P = (I + Bt + Bt2  +... )P
21

= P + BPt + BPT 2 +...
21

From this result the products BP and B P may be calculated.

In order to have independence it is necessary that

Pr(L 1 > t, L 2 > t, ... , LN-1 > t) = Pr (L 1 > t) ... Pr(LNl>t)

Thus by associating the t2 terms of the joint density with the product

of the densities it is seen to be necessary that

oo N-1 oo N-2 oo N-1 oo
B P = l AN2P + 2 (E A.P) !( A.P)

k= 0 i= 1 k- 0i= 1 k- 0 ij=i+1 k- 0
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This leads to the requirement

N-2 N-1 .. N-2 a . k+
1( 

k+1 
j+1

N-2 N- . N-2 k+ N-2 k k+ 1

i=1 j=i+l 1 k =O -k k+

k+ k +2 k+ k+2

= 1= i+ k= 0 lk+1 +~k+2 k

=0

or with sufficient algebra C and C2 may be combined to yield

N-1. N-2 N-1 1 N N-1

(1~3) =1 k- 0 i Pk+[ k= 0 j= 1 k+l

Nk+1 k+2

k=) j=l 1 k+ k+

with

N-i T . --
= . = 1 _

i= 1

and

k k kN

i= 1 k Ik = Lk
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substituted in (13) and with a little manipulation it can be seen that

k+l k+k+Z

k+1 = k+2
N-3 N N

k= 0 k+l k+2 k

N / k+2 N k+
N N p

IC- 0 k+2 k k= 0 k+ 1 k

But the term on the left is simply C1 for server N implying

Sk+Z k+

N-3 N N Pk +  - P =

k= 0 k+Z k= 1 ( k+ 1

or

k+ 1 k+2
N-2 N N-3 77 N 'N

(14) Pk =  Pk P

k=0 K+1 k= _ k+2 k N-2

Since this must hold for any server, it follows

N-2 N-3Z X k+lP k Xk+2 Pk + YPN-Z
k = 0 k= 0

or

X 1 P 0 + XZP 1 + +"' + Xn- PN-2

=X2 P0 + X3P 1 + " + XN-1PN-3 YPN-2

as desired.
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VIII. Restrictions

It has been shown that only when Q. Q can themultiple servers
j Qk

with exponential service time distributions having different means each

generate a Poisson output. It has yet to be shown how this set of equilibrium

probabilities might be established. In this section the two server case will

be examined in order to show a means of establishing the equilibrium proba-

bilities and also the nature of restrictions on the dispersion of the means

of the service times resulting from the necessity of establishing the equi-

librium probabilities.

Consider the two server queue shown in figure two. All the appropriate

assumptions are made in order to have Poisson outputs from each server.

Then.

1 1
Q1 2

and since their sum must equal one,

1 1Qi = ( i=1,2

The following -quation describes the system relative to server one, wiiere

R is the probability of assigning a customer arriving to find an empty

system to server one.

(14) (X + (r) P 1 = PR + Z P

The application of the equilibrium analysis given earlier in this paper

shows

0 (1 + 1)-
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where

1 l = 1 1

P1 1 0

P 2 = 1 P0

Using these results in (14) yields

(15) R =

Thus by assigning customers which arrive to find an empty queue to

server one with probability R given in (15) each server in the two

server queue will have a Poisson output.

Since R is a probability, it is subject to the restriction

0<R< 1

Therefore,

0l< + X (T1 - 2 )
0< < 1

Let Tl = p a, then a 2 = (1 - p) a and the following restrictions

result.

S 1+C
(16) 1 + < P <

'his restriction is indicated in the table below and is shown in graph

form in figure three. The restriction (16) shows that in order to

establish Poisson outputs from each server the dispersion of the

service time means must be restricted.
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L. B. U. B.

0 0 1

.2 .143 .781

.4 .222 .777

.6 .273 .729

.8 .308 .693

1.0 .333 .667
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FIGURE ONE

General N Server Queue

• .? )
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FIGURE TWO

Two Server Queue
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FIGURE 3

Plot of acceptable p versus C - server case
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IX. Conclusions

In this paper it has been shown that a multiple server queue, where

each server has an exponential service time distribution with possibly

different means, subject to a Poisson input with parameter X, and after

attaining equilibrium, will have a Poisson output with parameter X.

Furthermore, the output of each individual server i will be Poisson with
T i

parameter X -- if and only if it is equiprobable that a customer be in

server i, conditioned on 1 customers in the system, as in server j,

with the same conditioning. The two server queue was analyzed to show

how such equilibrium probabilities might be established and that for such

equilibrium probabilities to be possible the mean service times must not

be too different. Since systems are designed by criteria other than mak-

ing outputs fall into some nice statistical characterization, further in-

vestigation of the restrictions was not pursued.
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